к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Инфракрасная астрономия

Инфракрасная астрономия - область наблюдательной астрофизики, объединяющая методы и результаты исследований излучения астр, объектов в ИК-диапазоне (0,7 мкм - 1 мм). Иногда как часть И. а. выделяют субмиллиметровую астрономию (0,1 - 1 мм). Первым шагом в истории И. а. было открытие ИК-излучения Солнца [У. Гершель (W. Неrschel), 1800]. Методы И. а. Земная атмосфера прозрачна только в отд. участках (полосах) ИК-области спектра (табл.). Поглощение обусловлено в основном водяным паром. Его концентрация быстро убывает с высотой и на высоте ~12 км прибл. в 103 раз меньше, чем на уровне моря. Поэтому большие возможности для И. а. открываются при установке аппаратуры на аэростатах и высотных самолётах. Наилучшие результаты даёт вывод ИК-телескопа в космос. При этом оказывается возможным полностью охладить всю его оптику и резко снизить инструментальный фон теплового излучения, к-рый также существенно ограничивает возможности наземных измерений. Первый космич. ИК-телескоп был установлен на спутнике "ИРАС" (Infra red Astronomical Sattelite; Нидерланды, США и Великобритания, 1983). Он проработал ок. года, время жизни ограничивалось запасом жидкого гелия на борту. Потоки ИК-излучения звёзд в окнах прозрачности земной атмосферы
009-52.jpg
(1) I, J и т. д. -обозначения полос, широко применяемых в ИК-астроно.мии для фотометрических исследований звёзд и галактик при помощи фильтров (см. Астрофотометрия; )они соответствуют окнам прозрачности земной атмосферы; le - эффективная длина волны, Dl -ширина полосы по уровню 0,5. (2) Время накопления сигналов 1 мин, среднеквадратичная ошибка 0,05m. Оценки (кроме I) даны по результатам измерений с JHKLM-фотометром и NQ-фотометром Южной станции ГАИШ. В N и Q возможно улучшение на 2-3m при дальнейшей оптимизации конструкции фотометра (уменьшение инструментального фона). Для сравнения укажем, что в визуальной области спектра (полоса V, le=0,55 мкм) предельная звёздная величина ~15m при тех же условиях. Для детального исследования в окнах прозрачности земной атмосферы отд. источников с известными координатами широко применяются наземные телескопы с ИК регистрирующей аппаратурой. На рис. 1 приведена упрощённая схема измерений, применяемая в И. а. для фотометрии источников с малыми угл. размерами (звёзд, галактик, астероидов и др.), а в табл. даны предельные звёздные величины. Зеркало З2 (рис. 1) совершает периодич. колебания (частота ~20 Гц), в результате к-рых в плоскости приёмной площадки образуются два изображения звезды (А и Б), разнесённые на расстояние несколько большее, чем размеры приёмной площадки. При измерениях смещением всего телескопа на малый угол (~10'') приёмная площадка совмещается попеременно (с периодом t0, обычно неск. десятков секунд) с изображениями А и Б, в результате чего зависимость сигнала от времени на выходе СД имеет вид кривой, показанной на рис. 1 справа внизу. При такой схеме измерений излучение звезды выделяется на фоне
009-53.jpg
Рис. 1. Упрощённая схема телескопа с инфракрасным фотометром для исследования источников, имеющих малые угловые размеры: З1 - главное зеркало; З2 - вторичное зеркало; З3 - плоское "диагональное" зеркало; З4 - плоское зеркало для визуального наблюдения поля вокруг наблюдаемого объекта и контроля ведения телескопа по соседним звёздам; З5 - плоское убирающееся зеркало с окуляром О2 для точного наведения; Кр - криостат с оптическим входом; Ф - холодный фильтр; Д - система холодных диафрагм, выделяющая узкий угол (такой, что приёмник "видит" только вторичное зеркало); П - приёмник излучения; У - усилитель; СД - синхронный детектор; И - интегратор; Р - регистрирующее устройство.

потока теплового излучения прибора с наименьшими потерями. В качестве приёмников в И. а. наиб, эффективно используются фотодиоды InSb в фотовольтаич. режиме (охлаждение твёрдым азотом до 60 К) и полупроводниковые болометры на основе германия, легированного галлием (~2 К - жидкий гелий с откачкой). Для изучения спектров с разрешающей силой l/Dlа100 в И. а. с успехом применяется Фурье спектроскопия. Она оказалась совершенно незаменимой при измерении спектров теплового излучения планет и Земли с борта космич. аппаратов. Примеры спектров, полученных с помощью Фурье спектрометра, приведены на рис. 2. Дана идентификация полос поглощения, принадлежащих атм. газам, а также веществу частиц облаков (H2SO4 - в случае Венеры). Регистрировалось излучение разд. областей планеты (характерный размер - неск. десятков км). По этим спектрам определялись вертикальный температурный профиль, содержание малых составляющих, вертикальное распределение аэрозоля в атмосферах. Результаты И. а. В 20-х гг. 20 в. были проведены первые измерения теплового излучения Луны и планет (в диапазоне 8-13 мкм), определены температуры поверхности Луны, Меркурия, Марса, верх, границы облаков Венеры и Юпитера. Позднее ИК-спектры Венеры и Марса показали присутствие в их атмосферах СO2 (к-рый оказался их осн. составляющей) и целого ряда др. газов - СО, Н2О, на Венере, кроме того, НСl и HF. При помощи наземного телескопа с Фурье спектрометром были получены спектры этих планет в диапазоне 1-2,5 мкм с разрешающей силой l/Dl@105. Информативность ИК-методов исследования планет резко увеличилась с началом полётов к ним космич. аппаратов. ИК-радиометры и спектральные приборы на космич. аппаратах "Марс-3", "Марс-5", "Маринер-9", "Викинг-1,-2" (США) дали информацию о широтных и суточных вариациях температуры, содержания Н2О в атмосфере, а также данные о рельефе поверхности Марса. Анализ ИК-излучения Венеры по измерениям с борта её искусств, спутников "Пионер-Венера" и "Венера-15" выявил существенные широтные вариации строения мезосферы и облачного слоя, в т. ч. существование двух гигантских воронок (понижений верх, границы облачного слоя) в полярных широтах. Из-за большой интенсивности уходящего теплового излучения в этих приполярных областях совершенно необычным оказался
009-54.jpg
Рис. 2. Примеры спектров ИК-излучения Венеры (1) и Земли (2), полученных при помощи спектрометров Фурье, работавших на борту советских космических аппаратов "Венера-15" (1983) и "Метеор-28" (1977). По оси абсцисс волновые числа, по оси ординат - яркостная температура.

тепловой баланс планеты. Фундам. результат дали измерения теплового излучения Юпитера и Сатурна: их полный поток излучения больше, чем поток энергии, получаемой от Солнца, т. е. эти планеты имеют внутр. источник энергии. На космич. аппаратах "Вега-1,-2" (СССР) во время встречи с кометой Галлея впервые были измерены спектры излучения головы кометы в околоядерной зоне, найдены полосы, принадлежащие т. н. первичным молекулам, была определена темп-pa поверхности кометного ядра. Мн. звёзды, хорошо изученные в видимой области спектра, имеют т. н. избытки излучения в ИК-диапазоне. В нек-рых случаях почти всё изучение сосредоточено в области l>1 мкм (рис. 3). Его источником, как правило, является пылевое вещество в ближайших окрестностях этих звёзд (пылевые оболочки). Эти оболочки иногда бывают настолько плотными, что полностью поглощают излучение самой звезды и переизлучают его в более длинноволновом диапазоне. При этом спектр хорошо представляется единой планковской кривой, соответствующей температуре пылинок. Чаще звезда всё же просвечивает через оболочку, и в этом случае спектр представляется двумя приблизительно планковскими кривыми, одна из к-рых характеризует излучение оболочки, вторая - даёт распределение энергии в спектре звезды (деформированное при прохождении его через оболочку). Пылевыми оболочками обладают обычно старые звёзды, теряющие вещество (напр., красные гиганты), или молодые, окружённые остатками газопылевой среды, из к-рой они образовались. Наблюдения в ИК-дпапазоне часто являются единств, способом обнаружения молодых звёзд в областях активного звездообразования из-за большого кол-ва пыли, сильно поглощающей излучение в видимом диапазоне. Формирующаяся звезда (протозвезда) на самых ранних стадиях сама по себе имеет низкую температуру и является объектом, излучающим в ИК-диапазоне. Наблюдения ИК-спектров холодных звёзд позволили получить принципиально новые данные об их составе (в частности, было обнаружено, что в их атмосферах имеется Н2О). Со спутника "ИРАС" был впервые проведён обзор всего неба, в диапазоне 10-100 мкм зарегистрировано
009-55.jpg
Рис. 3. Примеры распределения энергии в спектре звезл, имеющих сильное ИК-излучение. Примеры относятся к звёздам-гигантам и сверхгигантам поздних спектральных классов с температурой фотосферы от 1800 до 2500 К, радиусы их оболочек ~1015 см, а самих звёзд 1012-1013 см.

ок. 250 тыс. источников. Был обнаружен новый класс ИК-объектов - сплющенные диски ок. звёзд, имеющие характерные размеры порядка 100 а. е. и температуру неск. десятков Кельвинов. Возможно, из таких дисков образуются планетные системы. Нек-рые галактики и квазары также являются сильными источниками ИК-излучения. Природа его не всегда ясна. В нек-рых случаях оно может быть тепловым излучением газопылевых комплексов, а в других - синхротронным излучением. Синхротронным является также ИК-излучение Крабовидной туманности - одного из остатков сверхновых в нашей Галактике.

Литература по инфракрасной астрономии

  1. Шоломицкий Г. Б., Прилуцкий О. Ф., Инфракрасная и субмиллиметровая астрономия, М., 1979;
  2. Инфракрасная и субмиллиметровая астрономия, под ред. Дж. Фацио, пер. с англ., М., 1979;
  3. Инфракрасная астрономия, под ред. Ч. Уинн-Уильямса, Д. Крукшенка, пер. с англ., М., 1983;
  4. Gezari D. Y., Schmitz М., Mead J. М., Catalog of Infrared observations, NASA Reference Publication 1118, Wash., 1984.

В. И. Мороз

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

Знаете ли Вы, в чем ложность понятия "физический вакуум"?

Физический вакуум - понятие релятивистской квантовой физики, под ним там понимают низшее (основное) энергетическое состояние квантованного поля, обладающее нулевыми импульсом, моментом импульса и другими квантовыми числами. Физическим вакуумом релятивистские теоретики называют полностью лишённое вещества пространство, заполненное неизмеряемым, а значит, лишь воображаемым полем. Такое состояние по мнению релятивистов не является абсолютной пустотой, но пространством, заполненным некими фантомными (виртуальными) частицами. Релятивистская квантовая теория поля утверждает, что, в согласии с принципом неопределённости Гейзенберга, в физическом вакууме постоянно рождаются и исчезают виртуальные, то есть кажущиеся (кому кажущиеся?), частицы: происходят так называемые нулевые колебания полей. Виртуальные частицы физического вакуума, а следовательно, он сам, по определению не имеют системы отсчета, так как в противном случае нарушался бы принцип относительности Эйнштейна, на котором основывается теория относительности (то есть стала бы возможной абсолютная система измерения с отсчетом от частиц физического вакуума, что в свою очередь однозначно опровергло бы принцип относительности, на котором постороена СТО). Таким образом, физический вакуум и его частицы не есть элементы физического мира, но лишь элементы теории относительности, которые существуют не в реальном мире, но лишь в релятивистских формулах, нарушая при этом принцип причинности (возникают и исчезают беспричинно), принцип объективности (виртуальные частицы можно считать в зависимсоти от желания теоретика либо существующими, либо не существующими), принцип фактической измеримости (не наблюдаемы, не имеют своей ИСО).

Когда тот или иной физик использует понятие "физический вакуум", он либо не понимает абсурдности этого термина, либо лукавит, являясь скрытым или явным приверженцем релятивистской идеологии.

Понять абсурдность этого понятия легче всего обратившись к истокам его возникновения. Рождено оно было Полем Дираком в 1930-х, когда стало ясно, что отрицание эфира в чистом виде, как это делал великий математик, но посредственный физик Анри Пуанкаре, уже нельзя. Слишком много фактов противоречит этому.

Для защиты релятивизма Поль Дирак ввел афизическое и алогичное понятие отрицательной энергии, а затем и существование "моря" двух компенсирующих друг друга энергий в вакууме - положительной и отрицательной, а также "моря" компенсирующих друг друга частиц - виртуальных (то есть кажущихся) электронов и позитронов в вакууме.

Однако такая постановка является внутренне противоречивой (виртуальные частицы ненаблюдаемы и их по произволу можно считать в одном случае отсутствующими, а в другом - присутствующими) и противоречащей релятивизму (то есть отрицанию эфира, так как при наличии таких частиц в вакууме релятивизм уже просто невозможен). Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 10.11.2021 - 12:37: ПЕРСОНАЛИИ - Personalias -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
10.11.2021 - 12:36: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
10.11.2021 - 12:36: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от д.м.н. Александра Алексеевича Редько - Карим_Хайдаров.
10.11.2021 - 12:35: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
10.11.2021 - 12:34: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вадима Глогера, США - Карим_Хайдаров.
10.11.2021 - 09:18: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> Волновая генетика Петра Гаряева, 5G-контроль и управление - Карим_Хайдаров.
10.11.2021 - 09:18: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.
10.11.2021 - 09:16: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
10.11.2021 - 09:15: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Екатерины Коваленко - Карим_Хайдаров.
10.11.2021 - 09:13: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вильгельма Варкентина - Карим_Хайдаров.
Bourabai Research - Технологии XXI века Bourabai Research Institution