к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Катодолюминесценция

Катодолюминесценция - люминесценция ,возникающая при возбуждении вещества потоками электронов, ускоренных во внеш. электрич. поле. К. обнаружена в сер. 19 в. до открытия электрона; пучок электронов, вызывающий свечение стеклянных стенок вакуумированных трубок, называли катодными лучами, и поэтому само свечение было назв. К. Как физ. явление К. впервые начал изучать У. Крукс (W. Crookes) в 70-х гг. 19 в. К., как и др. виды люминесценции, обладает инерционностью послесвечения, температурным и др. видами тушения, характерным для данного вещества спектром свечения и т. д. Вместе с тем она обладает специфич. свойствами, связанными с особенностями преобразования кинетич. энергии заряж. частицы в кванты излучения значительно меньшей энергии: многоэтапный процесс преобразования, наличие дополнительных каналов потерь энергии, часто наблюдающаяся нелинейная зависимость яркости свечения от напряжения и плотности тока, трековый характер возбуждения и т. д. Способностью к К. в видимой, ИК- или УФ-областях спектра в той или иной степени обладают мн. природные или специально синтезированные вещества - чистые и легированные разл. примесями полупроводники и диэлектрики, стёкла, молекулярные кристаллы, растворы и даже инертные газы в твёрдом состоянии. Наиб. эффективность преобразования энергии, достигающую 20-25%, имеют нек-рые поликристаллич. кристаллофосфоры с рекомбинац. механизмом свечения (катодолюминофоры). При К. преобразование энергии электронов проходит неск. последовательных стадий. Возбуждающий электрон за время ~10-14 с производит первичную ионизацию атомов (или ионов) осн. вещества, дающую начало каскадной ионизации вторичными и т. д. электронами вещества с достаточно высокой кинетич. энергией. Процесс размножения элементарных возбуждений заканчивается за время ~10-12 с, когда кинетич. энергия электронов (в зоне проводимости) и дырок (в валентной зоне) становится меньше пороговой энергии (обычно превышающей ширину запрещённой зоны ~в 1,5 раза), необходимой для создания ещё одной электронно-дырочной пары. Ионизация центров свечения и последующая излучат. рекомбинация носителей заряда на этих центрах происходит уже после термализации таких носителей (~10-11-10-10 с), т. е. когда их кинетич. энергия уменьшается до энергии тепловых колебаний решётки. Вследствие тепловых потерь эффективность К. не может превышать 30-40%. Дополнит. потери энергии возникают из-за отражения первичных электронов поверхностью вещества, приобретения ею отрицат. заряда, а также безызлучат. рекомбинации на разл. дефектах решётки, концентрация к-рых особенно велика в поверхностном, т. н. мёртвом, слое кристалла толщиной ~0,1 мкм. Заряд отводится в основном путём вторичной электронной эмиссии; с той же целью (а также для концентрации свечения по одну сторону от экрана) поверхность экрана покрывают тонкой плёнкой металла, например алюминия. Обычно для К. используют ускоряющие напряжения V~10-50 кВ, при к-рых глубина проникновения электронов составляет неск. единиц или десятков мкм. При V>50 кВ сильно возрастает интенсивность рентг. излучения и ускоряется образование радиац. дефектов в поверхностном слое кристаллов. Интенсивность К. пропорц. Va, где 1<a<2, и при V<1 кВ свечение практически полностью отсутствует. Однако с помощью обработки поверхности кристалликов, повышения их электропроводности и улучшения вакуума удаётся получить низковольтную К. уже при V~10 эВ, эффективность к-рой ~0,1%; она используется в буквенно-цифровых индикаторах. При увеличении плотности тока, необходимом для повышения яркости свечения, обычно наблюдается насыщение К., т. е. уменьшение эффективности свечения, к-рое обусловлено рядом причин: зарядка и нагрев образца, ионизация значит, доли центров свечения, высвечивание локализованных носителей и их тройная безызлучат. рекомбинация. Вместе с тем при импульсном возбуждении нек-рых особо чистых кристаллов и сублимированных плёнок яркость узких полос испускания, расположенных вблизи края фундам. поглощения, возрастает быстрее плотности тока. При превышении пороговых плотностей тока (до значений /10 А/см2) на соответствующих (обычно экситонных) переходах может наблюдаться и лазерное излучение, к-рое, однако, уже не является К. Катодолюминофоры обычно исследуют и используют в виде катодолюминесцентных экранов, т. е. тонких слоев (~5-20 мкм), осаждённых на металлич. или стеклянные подложки. Катодолюминесцентные экраны широко применяют для визуализации потоков электронов и создаваемых ими изображений во мн. совр. электронно-лучевых приборах разл. назначения. Для этих целей промышленность выпускает катодолюминофоры с разл. цветом и инерционностью свечения. Так, в качестве компонентов экранов чёрно-белого и цветного телевидения обычно используют цинк-кадмийсульфидные кристаллофосфоры, активизированные ионами серебра и меди. Изменяя состав основания кристалло-фосфоров и условия их синтеза, можно перекрыть весь видимый диапазон спектра с длительностью послесвечения (зависящей от плотности возбуждения) ~10-2-10-3 с, т. е. короче инерционности зрительного восприятия. Для тех же целей начинают применять др. основы (например, оксисульфиды), активированные редкоземельными ионами, к-рые уступают по эффективности, но, обладая более узкими полосами свечения, обеспечивают лучшую цветопередачу. Разработаны и катодолюминофоры с весьма длит, (секунды и даже минуты) и, наоборот, предельно коротким (до 10-7-10-8 с) послесвечением.

Литература по катодолюминесценции

  1. Москвин А. В., Катодолюминесценция, ч. 1, М.- Л., 1948;
  2. Марковский Л. Я., Пекерман Ф. М., Петошина Л. Н., Люминофоры, М-Л., 1966;
  3. Богданкевич О. В., Дарзнек С. А., Елисеев П. Г., Полупроводниковые лазеры, М., 1976.

Ю. П. Тимофеев

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

Знаете ли Вы, что такое мысленный эксперимент, gedanken experiment?
Это несуществующая практика, потусторонний опыт, воображение того, чего нет на самом деле. Мысленные эксперименты подобны снам наяву. Они рождают чудовищ. В отличие от физического эксперимента, который является опытной проверкой гипотез, "мысленный эксперимент" фокуснически подменяет экспериментальную проверку желаемыми, не проверенными на практике выводами, манипулируя логикообразными построениями, реально нарушающими саму логику путем использования недоказанных посылок в качестве доказанных, то есть путем подмены. Таким образом, основной задачей заявителей "мысленных экспериментов" является обман слушателя или читателя путем замены настоящего физического эксперимента его "куклой" - фиктивными рассуждениями под честное слово без самой физической проверки.
Заполнение физики воображаемыми, "мысленными экспериментами" привело к возникновению абсурдной сюрреалистической, спутанно-запутанной картины мира. Настоящий исследователь должен отличать такие "фантики" от настоящих ценностей.

Релятивисты и позитивисты утверждают, что "мысленный эксперимент" весьма полезный интрумент для проверки теорий (также возникающих в нашем уме) на непротиворечивость. В этом они обманывают людей, так как любая проверка может осуществляться только независимым от объекта проверки источником. Сам заявитель гипотезы не может быть проверкой своего же заявления, так как причина самого этого заявления есть отсутствие видимых для заявителя противоречий в заявлении.

Это мы видим на примере СТО и ОТО, превратившихся в своеобразный вид религии, управляющей наукой и общественным мнением. Никакое количество фактов, противоречащих им, не может преодолеть формулу Эйнштейна: "Если факт не соответствует теории - измените факт" (В другом варианте " - Факт не соответствует теории? - Тем хуже для факта").

Максимально, на что может претендовать "мысленный эксперимент" - это только на внутреннюю непротиворечивость гипотезы в рамках собственной, часто отнюдь не истинной логики заявителя. Соответсвие практике это не проверяет. Настоящая проверка может состояться только в действительном физическом эксперименте.

Эксперимент на то и эксперимент, что он есть не изощрение мысли, а проверка мысли. Непротиворечивая внутри себя мысль не может сама себя проверить. Это доказано Куртом Гёделем.

Понятие "мысленный эксперимент" придумано специально спекулянтами - релятивистами для шулерской подмены реальной проверки мысли на практике (эксперимента) своим "честным словом". Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 10.11.2021 - 12:37: ПЕРСОНАЛИИ - Personalias -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
10.11.2021 - 12:36: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
10.11.2021 - 12:36: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от д.м.н. Александра Алексеевича Редько - Карим_Хайдаров.
10.11.2021 - 12:35: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
10.11.2021 - 12:34: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вадима Глогера, США - Карим_Хайдаров.
10.11.2021 - 09:18: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> Волновая генетика Петра Гаряева, 5G-контроль и управление - Карим_Хайдаров.
10.11.2021 - 09:18: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.
10.11.2021 - 09:16: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
10.11.2021 - 09:15: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Екатерины Коваленко - Карим_Хайдаров.
10.11.2021 - 09:13: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вильгельма Варкентина - Карим_Хайдаров.
Bourabai Research - Технологии XXI века Bourabai Research Institution