к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Оптическая запись информации

Оптическая запись информации - процессы записи информации, переносимой оптич. излучением, а также область науки, изучающая эти процессы. О, з. и. осуществляют на т. и. оптич. носителях информации - физ. телах, используемых для сохранения в них или на их поверхности оптич. информации. О. з. н. основана на светоиндуциров. процессах в регистрирующей среде, к-рые приводят к изменению состояния или формы носителя. О. з. и. может включать в себя также дополнит. обработку носителя, напр. проявление, закрепление, изменение размеров и т. д.
Для О. з. и. можно использовать изменение любого физ--хим. свойства регистрирующей среды (электронного состояния, атомной структуры, намагниченности и т. д.). Однако в осн. используют изменение двух параметров: комплексного показателя преломления15016-107.jpg15016-108.jpg и оптич. длины пути l - lГп (lГ - геом. путь, п - показатель преломления среды,15016-109.jpg - характеризует поглощение). Изменение величины15016-110.jpg15016-111.jpgи15016-112.jpg под действием оптич. излучения даёт соответственно амплитудную, фазовую и рельефно-фазовую запись. Существует неск. классов регистрирующих сред: галогенидосеребряные, фотохромные (см. Фотохромные материалы ),электрооптические, магнитооптические и разл. полупроводники - аморфные, органпч., молекулярные. В галогенидосеребряных средах можно получить амплитудную15016-113.jpg или фазовую15016-114.jpg15016-115.jpg запись. В аморфных полупроводниках фотофиз. реакции приводят к амплитудной записи. В органич. полупроводниках в эл--фотогр. процессе записи реализуется амплитудная, а в фототермопластическом - рельефно-фазовая записи (см. Фазовая рельефография). В магнитооптических средах, меняющих намагниченность под действием света, О. з. и. и её воспроизведение происходят с использованием эффекта Фарадея.
Параметры оптической регистрации. Важнейшими параметрами оптич. регистрирующей среды являются: уд. энергия W (табл.), характеризующая уд. светочувствительность S среды (W = 1/S)и равная величине входного сигнала, при к-рой достигается заданное отношение сигнал/шум в выходном сигнале (обычно W измеряется в Дж/см2); разрешающая способность R (в мм-1) или плотность записи (бит/см2, бит/см3); энергия, необходимая для записи одного бита информации, характеризующая информац. светочувствительность Sинф (обычно измеряется в Дж/бит); обратимость записи, характеризуемая числом циклов перезаписи, возможность записи в реальном времени. Уд. и информац. светочувствительности среды связаны соотношением S-1инф = kS х R2 , где k - коэф., зависящий от способа измерения R. Светочувствительность сред изменяется в пределах 11 порядков, соответственно, W от 1 до 10-11 Дж/см2. Энергия записи одного бита информации изменяется от 10-9 Дж/бит (типичная величина для прямой записи) до 10-16 Дж/бит (для наиб. чувствительных галогенидосеребряных сред) и до 5 х 10-15 Дж /бит (для наиб. чувствительных несеребряных сред), т. е. она значительно меньше, чем для электронных вычислит. систем (10-12 - 10-13 Дж/бит). Ряд сред разл. классов позволяет выполнять обратимую оптпч. запись. К таким средам относятся халькогенпдпые типа ТеОх, окислы ванадия VOх (число циклов перезаписи не менее 106), гетероструктурные фототермопластич. среды (число циклов перезаписи не менее 103).

Светоиндуцнрованные процессы в разл. веществах сводятся к трём типам реакций: фотоперспос носителей заряда (без изменения структуры вещества); светоиндуцир. фазовые переходы (фотоструктурные изменения вещества); селективное электрои-фононное преобразование центров (процессы выжигания провалов в бесфононных линиях).
Фотопереносом электронов обусловлено большинство фотохромных реакций в ионных кристаллах и органич. соединениях, а также процессы фоторефракции в эл--оптич. кристаллах. В халькогенидных стеклообразных полупроводниках фотоперенос заряда является определяющим при интенсивности света < 100 Вт/см2, а при больших интенсивностях процессы носят фототермнч. характер. Светоиндуцированные фазовые переходы в большинстве случаев фототермические, поглощённая световая энергия вызывает нагрев вещества. Фототермич. запись наиб. детально изучена в аморфных халькогенидных полупроводниках (теллур, бинарные соединения типа АsхS100_хТеОx.). В них индуцированные светом реакции фазовых переходов "аморфное состояние - кристаллич. состояние" по светочувствительности не уступают реакциям фотопереноса (см. табл.). Селективное электрон-фононное преобразование центров в твёрдых телах путём лазерного выжигания спектральных провалов на бесфононных линиях реализуется на молекулярных центрах в ионных кристаллах, органич. твёрдых телах и др. Спектры поглощения и люминесценции молекулярных центров в твёрдых телах и замороженных растворах состоят из характерных бесфононных линий (чисто электронные переходы) с широкими фононными крыльями. Если интенсивность бесфопонпых линий существенно превышает интенсивность фононных крыльев, то с помощью лазера можно сделать спектральный провал - "выжечь" узкую бесфононную линию в пределах всего спектра неоднородного уширения. Лазерное возбуждение переводит центр в метастабильное или ионизов. состояние. Меняя частоту лазера, можно выжигать ~106 бесфононных линий в пределах полосы фононных крыльев. Этим способом удаётся существенно превысить дифракц. предел оптич. записи на двумерных средах (108 бит/см2), доведя его до 1011 бит/см2.

Параметры регистрирующих сред для оптической записи
Регистрирующие среды
W,

Дж/с.м2

S, ед. ГОСТ
R,

мм-1

S инф, Дж/бит
Галогенидосеребрянпые: Polaroid Type 410
10-11
104
10
10-15
Royal X - Pan Kodak
(1 - 5) х 10-10
103
60
10-15 -2 х 10-18
Kodak 649F
3 х 10-5
0,01
5 х 1 03
10-14
Фотохромные: ионные кристаллы стёкла
10-2 - 5
-
-
10-8 - 2 х 10-10
Электрооптич. кристаллы: кристаллы LiNbO3
5 х 10-5
4 х 1 03
3 х 10-14
Керамика
0,1 - 0, 6
-
Аморфные полупроводники
10-2 - 10-4
3 х 1 0-3
10-9
Магнитооптические
10-2
-
10-9
Органич. полупроводники: фототермопластнки
5 х 10-6
0,1
2 х 103
5 х 10-14
Реоксан
10-2
-
Фотохромные
1
-
_
10-8
Молекулярные
10-2
-
-
10-9
Оптические бистабиль-ные VOX
10-5
2 х 103
3 х 10-14
Гетеростру ктурные: CdSc-термопластнк
10-7
102
500
5 х 10-15

Для светоиндуциров. процессов, согласно закону Эйнштейна, один поглощённый квант света вызывает один элементарный акт в веществе. Для количеств. характеристики действия света вводят понятие квантового выхода15016-116.jpg, определяемого как отношение ср. количества элементарных актов светоиндуциров. процессов или реакций Na, возникших под действием N поглощённых квантов света, к числу этих квантов:
15016-117.jpg = Na/N. В прямых светоиндуцнров. реакциях без дополнит. усиления эффекта, вызванного светом, квантовый выход не может превышать единицу. Он может быть больше единицы (до десятков), если вызванная светом реакция связана с распадом высокоэнергетич. электронного состояния на неск. низкоэнергетич. состояний или с размножением электронных возбуждений в сильном электрич. поле. Такими процессами являются, напр., фотонное умножение в полупроводниках и распад высокоэнергетич. электронных состояний в щёлочно-галоидных кристаллах, галогенидосеребряных средах, аморфных и органич. полупроводниках. Величина15016-118.jpg и уровень усиления первичной записи определяют предельную светочувствительность сред.
Основные типы носителей оптической информации. Существуют три способа оптич. записи: аналоговый, побитовый, голографический, к-рые используются со всеми типами оптич. носителей информации. Первые исследования по О. з. и. были выполнены Гольдбергом (Goldberg) в 1926 на фотоэмульсиях в виде микрофотографий. Была достигнута предельная плотность записи информации для двумерной записи 108 бит/см2. Микрофотографии (микрофиши) обладают высокой разрешающей способностью, и информация на них может храниться десятилетиями. Однако этот способ не получил широкого распространения для обработки информации ввиду трудностей выборки микрофотогр. информации. Разработки регистрирующих сред для прямой О. з. и. в реальном времени завершились появлением в 1982 оптич. дисков памяти (см. Памяти устройства), к-рые используются на мировом рынке в видеопроигрывателях и видеоустройствах. Высокое качество звуко- и видеовоспроизведения обеспечило их широкое распространение. В оптич. дисках памяти применяется оптпч. побитовая запись в тонких металлич. и полупроводниковых плёнках. Сравнительно простая технология, низкая стоимость носителей и процессов записи (запись одного бита информации в ~103 раз дешевле, чем магнитная на дисках и лентах), а также надёжность в эксплуатации явились решающими факторами их широкого практич. применения. Они обладают высокой разрешающей способностью (плотность записи 108 бит/см2) и высокой светочувствительностью (10-9 Дж/бит), позволяющей осуществлять запись с маломощными (5 - 10 мВт) полупроводниковыми лазерами.
Пространственно-временные модуляторы света обладают высокой светочувствительностью, с ними возможны быстрые запись и стирание, высокая цикличность, они используются для ввода оптич. некогерентных изображений в информац--вычислит. системы, в оптич. спецпроцессорах для обнаружения, опознавания образов и слежения, для анализа и преобразования изображений.
О голографич. записи информации см. в ст. Голограмма, Голографическое распознавание образов, Голография.

Литература по оптической записи информации

  1. Фризер X., Фотографическая регистрация информации, пер. с нем., М., 1978;
  2. Бугаев А. А., Захарченя Б. П., Чудновский Ф. А., Фазовый переход металл - полупроводник и его применение, Л., 1079;
  3. Акимов И. А., Черкасов Ю. А., Черкашин М. И., Сенсибилизированный фотоэффект, М., 1980;
  4. Несеребряные фотографические процессы, под ред. А. Л. Картужанского, Л., 1984;
  5. Шварц К. К., Физика оптической записи в диэлектриках и полупроводниках, Рига, 1986;
  6. Пространствснные модуляторы света, М., 1987;
  7. Черкасов Ю. А., Буров П. А., CdSe - ФТП - новая регистрирующая среда для пространственных модуляторов света широкой области спектра, "Труды ГОИ", 1988, т. 70, в. 204, с. 67 (Иконика, кн. V).

Ю. А. Черкасов

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

Знаете ли Вы, в чем ложность понятия "физический вакуум"?

Физический вакуум - понятие релятивистской квантовой физики, под ним там понимают низшее (основное) энергетическое состояние квантованного поля, обладающее нулевыми импульсом, моментом импульса и другими квантовыми числами. Физическим вакуумом релятивистские теоретики называют полностью лишённое вещества пространство, заполненное неизмеряемым, а значит, лишь воображаемым полем. Такое состояние по мнению релятивистов не является абсолютной пустотой, но пространством, заполненным некими фантомными (виртуальными) частицами. Релятивистская квантовая теория поля утверждает, что, в согласии с принципом неопределённости Гейзенберга, в физическом вакууме постоянно рождаются и исчезают виртуальные, то есть кажущиеся (кому кажущиеся?), частицы: происходят так называемые нулевые колебания полей. Виртуальные частицы физического вакуума, а следовательно, он сам, по определению не имеют системы отсчета, так как в противном случае нарушался бы принцип относительности Эйнштейна, на котором основывается теория относительности (то есть стала бы возможной абсолютная система измерения с отсчетом от частиц физического вакуума, что в свою очередь однозначно опровергло бы принцип относительности, на котором постороена СТО). Таким образом, физический вакуум и его частицы не есть элементы физического мира, но лишь элементы теории относительности, которые существуют не в реальном мире, но лишь в релятивистских формулах, нарушая при этом принцип причинности (возникают и исчезают беспричинно), принцип объективности (виртуальные частицы можно считать в зависимсоти от желания теоретика либо существующими, либо не существующими), принцип фактической измеримости (не наблюдаемы, не имеют своей ИСО).

Когда тот или иной физик использует понятие "физический вакуум", он либо не понимает абсурдности этого термина, либо лукавит, являясь скрытым или явным приверженцем релятивистской идеологии.

Понять абсурдность этого понятия легче всего обратившись к истокам его возникновения. Рождено оно было Полем Дираком в 1930-х, когда стало ясно, что отрицание эфира в чистом виде, как это делал великий математик, но посредственный физик Анри Пуанкаре, уже нельзя. Слишком много фактов противоречит этому.

Для защиты релятивизма Поль Дирак ввел афизическое и алогичное понятие отрицательной энергии, а затем и существование "моря" двух компенсирующих друг друга энергий в вакууме - положительной и отрицательной, а также "моря" компенсирующих друг друга частиц - виртуальных (то есть кажущихся) электронов и позитронов в вакууме.

Однако такая постановка является внутренне противоречивой (виртуальные частицы ненаблюдаемы и их по произволу можно считать в одном случае отсутствующими, а в другом - присутствующими) и противоречащей релятивизму (то есть отрицанию эфира, так как при наличии таких частиц в вакууме релятивизм уже просто невозможен). Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 10.11.2021 - 12:37: ПЕРСОНАЛИИ - Personalias -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
10.11.2021 - 12:36: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
10.11.2021 - 12:36: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от д.м.н. Александра Алексеевича Редько - Карим_Хайдаров.
10.11.2021 - 12:35: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
10.11.2021 - 12:34: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вадима Глогера, США - Карим_Хайдаров.
10.11.2021 - 09:18: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> Волновая генетика Петра Гаряева, 5G-контроль и управление - Карим_Хайдаров.
10.11.2021 - 09:18: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.
10.11.2021 - 09:16: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
10.11.2021 - 09:15: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Екатерины Коваленко - Карим_Хайдаров.
10.11.2021 - 09:13: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вильгельма Варкентина - Карим_Хайдаров.
Bourabai Research - Технологии XXI века Bourabai Research Institution