к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Отражение волн

Отражение волн - переизлучение волн препятствиями с изменением направления распространения (вплоть до смены на противоположное). Отражающими объектами могут служить неоднородности среды (как резкие в масштабе длины волны15030-47.jpg, так и плавные), сочленения волноводных систем и изменения их геометрии, непрозрачные тела, в к-рых волны данной природы распространяться не могут. Обычно на границе раздела сред одновременно с О. в. происходит преломление волн.
При падении плоской монохроматич. волны на плоскую границу раздела двух однородных сред с разными свойствами происходит зеркальное О. в. (рис.). Амплитуды, фазы и направления распространения отражённой и преломлённой (прошедшей) волн определяются на основе согласования волновых полей по разные стороны от границы в соответствии с граничными условиями. Требование непрерывности фазы приводит к универсальному закону: тангенциальные (параллельные границе) составляющие волновых векторов падающей, отражённой и преломлённой волн15030-48.jpg15030-49.jpg должны быть равны между собой (рис., б). В случае изотропных неподвижных сред нормальные составляющие15030-50.jpgи допустима след. лучевая трактовка закона О. в.: 1) падающий и отражённый лучи лежат в одной, нормальной к границе, плоскости, 2) угол отражения15030-51.jpg (между лучом и нормалью) равен углу падения15030-52.jpg (рис., а).

15030-53.jpg

Отражение и преломление волны на плоской границе раздела двух сред с различными показателями преломления (n2>n1): a - лучевая картина; б - -проекции волновых векторов падающей, отражённой и преломлённой волн на границу одинаковы.

Интенсивность отражённой волны характеризуется коэф. отражения R (отношением интенсивностеи отражённой и падающей волн), к-рый существенно зависит от природы волн, свойств обеих сред, поляризации волн и угла15030-54.jpg Для расчёта R необходимо удовлетворить специфическим для волн данной природы граничным условиям. Напр., в случае эл--магн. волн граничные условия требуют, чтобы на границе тангенциальные составляющие напряжённостей электрич. и магн. полей были равны (см. Френеля формулы ).В акустике граничные условия требуют, чтобы на границе раздела были равны давления в обеих средах и нормальные составляющие скорости частиц среды. В этом случае

15030-55.jpg

где п = n2/nl = c12 - относительный показатель преломления,15030-56.jpg - отношение плотностей сред.

В спец. случаях возможно безотражат. прохождение волны через границу (Брюстера закон ).В (1) числитель обращается в нуль при15030-57.jpg , где15030-58.jpg = (т2 - n2)/(n2 - 1). В оптике явление Брюстера наблюдается для волн, поляризованных в плоскости падения.

При п < 1 и углах падения, больших критического15030-59.jpg (sin15030-60.jpg = n), имеет место полное внутреннее О. в. Числитель и знаменатель в (1) при15030-61.jpg становятся комплексно сопряжёнными и, следовательно, Rs = Г x Г*15030-62.jpg 1. Преломлённая волна при полном внутр. О. в. имеет вид поверхностной волны, экспоненциально прижатой к границе.
Идеальные отражающие экраны (зеркала) - предельный случаи границы раздела сред, когда п15030-63.jpg(абсолютно жёсткие стенки в акустике, идеально проводящие поверхности в электродинамике) или п15030-64.jpg0 (абсолютно податливые или идеальные магн. стенки соответственно). И в том и в другом случае R15030-65.jpg 1.
Как отражённая, так и преломлённая волны являются, вообще говоря, результатом интерференции волн, переизлучённых в толще обеих сред. Законы зеркального О. в. могут быть обобщены и приближённо сформулированы как локальные для участка границы, если: 1) размеры, радиусы кривизны поверхностей и масштабы неоднородностей сред много больше длины волны15030-66.jpg (условия применимости геометрической оптики); 2)размеры неровностей границы15030-67.jpg Если размеры неровностей сравнимы с15030-68.jpg, то возможны два случая: при хаотич. расположении неровностей (шероховатая граница) имеет место стохастич. рассеяние волн (наз. также диффузным О. в.); при периодич. расположении неровностей (отражат. дифракционные решётки) кроме отражённой в зеркальном направлении волны возникает дискретный набор "побочных" волн, направления распространения к-рых зависят от15030-69.jpg, что используется в анализаторах спектра.
О. в. от движущихся объектов происходит со смещением частоты (Доплера эффект ),угол отражения при этом пе равен углу падения (т. н. угловая аберрация). В средах с непрерывно меняющимися свойствами О. в. наблюдается, если характерные масштабы неоднородностей L15030-70.jpgВ плавно-неоднородных средах L15030-71.jpg "истинное" О. в. экспоненциально мало, однако рефракция в плавно-неоднородных средах может привести к явлениям, сходным с О. в., напр. мираж в пустыне (см. Рефракция звука. Рефракция света). В нелинейных средах волны большой интенсивности сами индуцируют неоднородности, при рассеянии на которых (вынужденное рассеяние) может даже возникать, например, специфическое О. в. с обращением волнового фронта.
О. в. лежит в основе мн. природных явлений (эхо, миражи, подводные звуковые каналы в океане, радиоканалы в ионосфере), техн. устройств и систем (волноводы, резонаторы, гидролокация, радиолокация). В некоторых случаях отражения волн приводит к вредным последствиям: повышению уровня шумов, гиперреверберации в залах, слепящим бликам, искажению телевизионных изображений. Для борьбы с паразитным тражением волн применяются поглощающие покрытия, согласующие элементы (в волноводной технике), четвертьволновые плёнки ("голубая" оптика), плавные в масштабе длины волны переходные слои и др.
В общем случае отражения волн не может рассматриваться изолированно от явлений прохождения волн (преломления, просачивания), поглощения, рассеяния, дифракции волн и трансформации волн (преобразования в волны др. физ. природы или в волны с другой пространственной структурой). Выделение отражённых волн из полного волнового поля в известной мере условно и традиционно связано с лучевой трактовкой процесса распространения и теорией переноса изображений; к отражению волн, как правило, относят только тот класс явлений, в к-рых восстанавливается изображение источника (правильное или искажённое).

Литература по отражению волн

  1. Горелик Г. С., Колебания и волны, 2 изд., М., 1059;
  2. Крауфорд Ф., Волны, пер. с англ., 3 изд., М., 1981;
  3. Пирс Дж., Почти все о волнах, пер. с англ., М., 1976.

М. А. Миллер, Г. В. Пермитин

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

Знаете ли Вы, что cогласно релятивистской мифологии "гравитационное линзирование - это физическое явление, связанное с отклонением лучей света в поле тяжести. Гравитационные линзы обясняют образование кратных изображений одного и того же астрономического объекта (квазаров, галактик), когда на луч зрения от источника к наблюдателю попадает другая галактика или скопление галактик (собственно линза). В некоторых изображениях происходит усиление яркости оригинального источника." (Релятивисты приводят примеры искажения изображений галактик в качестве подтверждения ОТО - воздействия гравитации на свет)
При этом они забывают, что поле действия эффекта ОТО - это малые углы вблизи поверхности звезд, где на самом деле этот эффект не наблюдается (затменные двойные). Разница в шкалах явлений реального искажения изображений галактик и мифического отклонения вблизи звезд - 1011 раз. Приведу аналогию. Можно говорить о воздействии поверхностного натяжения на форму капель, но нельзя серьезно говорить о силе поверхностного натяжения, как о причине океанских приливов.
Эфирная физика находит ответ на наблюдаемое явление искажения изображений галактик. Это результат нагрева эфира вблизи галактик, изменения его плотности и, следовательно, изменения скорости света на галактических расстояниях вследствие преломления света в эфире различной плотности. Подтверждением термической природы искажения изображений галактик является прямая связь этого искажения с радиоизлучением пространства, то есть эфира в этом месте, смещение спектра CMB (космическое микроволновое излучение) в данном направлении в высокочастотную область. Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 10.11.2021 - 12:37: ПЕРСОНАЛИИ - Personalias -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
10.11.2021 - 12:36: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
10.11.2021 - 12:36: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от д.м.н. Александра Алексеевича Редько - Карим_Хайдаров.
10.11.2021 - 12:35: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
10.11.2021 - 12:34: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вадима Глогера, США - Карим_Хайдаров.
10.11.2021 - 09:18: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> Волновая генетика Петра Гаряева, 5G-контроль и управление - Карим_Хайдаров.
10.11.2021 - 09:18: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.
10.11.2021 - 09:16: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
10.11.2021 - 09:15: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Екатерины Коваленко - Карим_Хайдаров.
10.11.2021 - 09:13: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вильгельма Варкентина - Карим_Хайдаров.
Bourabai Research - Технологии XXI века Bourabai Research Institution