к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Эпитаксия

Эпитаксия (от греч. epi - на, над, при и taxis-расположение, порядок) - процесс наращивания монокристал-лич. слоев вещества на подложку (кристалл), при к-ром кристаллографич. ориентация наращиваемого слоя повторяет кристаллографич. ориентацию подложки. Э. позволяет получать такие тонкие (1 нм-10 мкм) однородные мо-нокристаллич. слои - т.н. эпитаксиальные слои (ЭС) - любого типа проводимости и любого уд. электрич. сопротивления, какие невозможно создать иным способом. Различают гетероэпитаксию, когда вещества подложки и наращиваемого слоя различны по хим. составу и кристаллич. структуре, и гомоэпитаксию (автоэпита-ксию), когда подложка и наращиваемый слой одинаковы по хим. составу или отличаются только примесным составом. Э. используется в технологии производства широкого класса электронных приборов и устройств для получения (в виде плёнок и многослойных структур) эпитаксиальных слоев элементарных полупроводников, соединений типа AIII BV, AII BVI, AIV BVI, гранатов, ортоферритов и др. материалов.

Свойства ЭС во многом определяются условиями сопряжения кристаллич. решёток наращиваемого слоя и подложки, причём существенно их структурно-геом. соответствие; легче всего сопрягаются вещества, кристаллич. структуры к-рых одинаковы или близки (напр., вещества с кристаллич. структурой сфалерита и алмаза). Э. легко осуществляется, если разность постоянных решёток не превышает 10%; в этом случае тонкий наросший ЭС продолжает атомные плоскости подложки (возникает псевдо-морфный слой). При больших расхождениях сопрягаются наиб. плотно упакованные плоскости. При разл. решётках сопрягаемых веществ в ЭС возникают дислокации несоответствия. Плотностью дислокаций несоответствия можно управлять, меняя параметры решётки растущего кристалла (напр., введением примесей) и получая т.о. бездислока-ционные ЭС с высокой подвижностью и малой плотностью носителей заряда. Помимо структурно-геом. соответствия сопряжение пар веществ зависит от температуры процесса (температурой Э. наз. предельно низкая темп-pa, при к-рой ещё возможно ориентированное нарастание вещества), степени пересыщения осаждаемого вещества, совершенства подложки и чистоты её поверхности. Поэтому подложку перед Э. обычно подвергают механич., хим. или радиац. обработке. ЭС растёт за счёт атомов и молекул, составляющих адсорбц. слой, и скорость роста зависит от пересыщения в этом слое.

Э. возможна из любой фазы: газовой (газофазная Э.- ГФЭ), жидкой (жидкостная, или жидкофазная, Э.- ЖФЭ) и твёрдой (твердофазная Э.- ТФЭ). Преимуществ. развитие получили ГФЭ и ЖФЭ.

Методы ГФЭ делятся на химические и физические. Хим. методы ГФЭ основаны на осаждении из газовой фазы вещества, полученного в результате след. хим. реакций: восстановления хлоридов Si и Ge водородом (напр., SiCl4 + 2H2 = Si + 4HCl - т.н. хлоридный процесс); пиро-литич. разложения моносилана (SiH4 = Si + 2H2); диспро-порционирования дииодидов и дихлоридов Si и Ge (напр., 2SiCl25126-79.jpgSi + SiCl4) и др. Процессы осуществляются в реакторах (рис. 1); газовая система обеспечивает подачу в реакторную камеру газовой смеси требуемого состава. Добавляя к газовой смеси соединения легирующих элементов (напр., AsCl3, B2H6), выращивают ЭС п- или p-типа соответственно. Темп-pa процесса определяется кинетикой хим. реакции и обычно находится в пределах 800-1300° С.

5126-80.jpg

Рис. 1. Схемы горизонтальной (вверху) и вертикальной (внизу) реакторных камер для эпитаксии из газовой фазы хлоридным методом: 1-реакторная камера; 2-нагреватель; 3 -подставка для подложек; 4-подложка.


К физ. методам относят методы термич. осаждения из молекулярных пучков в вакууме, мгновенного испарения, "горячей стенки", а также методы катодного распыления и осаждения. По методу термич. осаждения из молекулярных пучков испаряемое вещество нагревается до требуемой температуры (выше или ниже температуры плавления испаряемого вещества в зависимости от упругости пара в точке плавления) в сверхвысоком вакууме (<=1,3.10-8 Па), при этом его атомы и молекулы попадают на подложку, где и происходит их конденсация. Наиб. совершенным является электронно-лучевой способ нагрева, отчего такой метод получил название м о л е к у л я р н о-л у ч е в о й э п и т а кс и и (МЛЭ). Этот метод позволяет в процессе осаждения контролировать структуру и состояние поверхности подложек, регулировать плотность молекулярного потока, т. е. скорость роста кристаллов, обеспечивать возможность при помощи маски выполнять локальную кристаллизацию, получать резкие межслойные границы, выращивать сверхтонкие (1 -100 нм) эпитаксиальные слои (плёнки) полупроводников, диэлектриков и металлов, создавать сверхрешётки (последовательность большого числа чередующихся слоев разного состава толщиной 5-10 нм), осуществлять многослойную застройку решётки. На основе плёнок, полученных методом молекулярно-лучевой эпита-ксии, создают оптоэлектронные интегральные схемы, сверхбыстродействующие большие интегральные схемы, фотоприёмники и лазеры на гетероструктурах, фотокатоды с отрицат. электронным сродством, др. приборы и устройства.

Метод мгновенного испарения близок к методу осаждения из молекулярных пучков и заключается в том, что исходное вещество непрерывно и равномерно поступает в испаритель, между ним и составом газовой фазы поддерживается термодинамич. равновесие. Обычно этот метод используют для получения ЭС материалов, компоненты к-рых обладают разл. упругостями пара (напр., GaP, GaAlAs, GaAsP).

Метод катодного распыления отличается от термич. методов тем, что исходным веществом служит вещество нагреваемого твёрдого тела. В осн. применяют катодное распыление с помощью тлеющего разряда (рис. 2). Процесс идёт в среде инертного газа при давлениях 0,133- 13,3 Па, при более низкой, чем в методах термич. испарения, эпитаксиальной температуре.

5127-1.jpg

Рис. 2. Схема камеры для катодного распыления: 1-катод; 2-подложка; 3 - анод; 4 -плазма Ar+.


Метод катодного осаждения сочетает методы катодного распыления и осаждения из молекулярных пучков. Вещество (рис. 3) испаряется термич. путём, подложка служит отрицат. электродом и располагается в зоне плазмы, поддерживаемой постоянным током или ВЧ-разрядом. Испарившиеся атомы ионизируются в плазменном пространстве и осаждаются на катоде подложки. С сер. 1980-х гг. развивается метод осаждения веществ из ионизир. пучков, позволяющий получить ЭС, легированные летучими примесями при сравнительно низких температурах.

5127-2.jpg

Рис. 3. Схема метода катодного осаждения: 1 - источник; 2 - подложка; 3 -плазма.

Методы ЖФЭ основаны на кристаллизации из раствора в расплаве и различаются в зависимости от способа удаления раствора с поверхности плёнки [простым сливом (рис. 4, а), принудительным удалением (рис. 4, б) и без удаления]. ЖФЭ можно проводить при относительно невысоких температурах (400-500 °С). ЖФЭ позволяет получить многослойные эпитаксиальные структуры и плёнки определённой конфигурации (с помощью маски из SiO2).

Методы ТФЭ основаны на процессах ориентированного роста ЭС в двух-, трёхслойных системах при изотермич. отжиге. Один из слоев - монокристаллич. подложка, другие- аморфные и поликристаллич. слои полупроводников и металлов. Для сохранения расположенных в подложке приборных структур применяют импульсную термич. обработку.

5127-3.jpg

Рис. 4. Схема устройства для жидкофазной эпитаксии со сливом раствора с поверхности плёнки (вверху) и принудительным удалением раствора (внизу): 1 - подложка; 2-контейнер; 3-печь сопротивления; 4-кварцевая ампула; 5 - термопара; 6-9-растворы; 10-ползунок; 11-кассета.

За последние годы получили широкое распространение разл. методы газофазной Э. из металлоорганич. соединений (МОС). Метод МОС-гидридной Э. при пониженном давлении в реакторе является наиб. универсальным для синтеза большинства соединений AIIIBV и по основным параметрам не уступает МЛЭ, а по производительности, степени совершенства поверхности эпитакси-альных плёнок, относительно более простому аппаратному оформлению выгодно отличается от последнего. Данный метод используется для новейших разработок и производства полупроводниковых СВЧ- и оптоэлектрон-ных приборов, напр. транзисторов с высокой подвижностью электронов, где реализуется эффект двумерного электрон. газа на гетерограницах GaAlAs/GaAs, InGaAs/InP, лазеров на основе гетероструктур GaAlAs/GaAs, InGaAs/InP с квантовыми ямами, приборов на основе четверных соединений типа InGaAsP с напряжёнными слоями, разл. наноразмерных гетероструктур с чередующимися слоями и др. Освоение разл. модификаций методов МОС-гидридной Э. и МЛЭ в сочетании с хим. пучковой Э. и атомно-слоевой Э. позволяет охватить практически все новые задачи полупроводникового материаловедения.

Литература по эпитаксии

  1. Чистяков Ю. Д., Райнова Ю. П., Физико-химические основы технологии микроэлектроники, М., 1979;
  2. Современная кристаллография, т. 3, М., 1980;
  3. Денисов А. Г., Кузнецов Н. А., Макаренко В. А., Оборудование для молекулярно-лучевой эпи-таксии, "Обзоры по электронной технике", сер. 7, в. 17, М., 1981;
  4. Херман М., Полупроводниковые сверхрешетки, пер. с англ., М., 1989;
  5. Молекулярно-лучевая эпитаксия и гетероструктуры, под ред. Л. Ченга, К. Плога, пер. с англ., М., 1989.

Г. С. Дорджин, Л. М. Можаров

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

Знаете ли Вы, что релятивистское объяснение феномену CMB (космическому микроволновому излучению) придумал человек выдающейся фантазии Иосиф Шкловский (помните книжку миллионного тиража "Вселенная, жизнь, разум"?). Он выдвинул совершенно абсурдную идею, заключавшуюся в том, что это есть "реликтовое" излучение, оставшееся после "Большого Взрыва", то есть от момента "рождения" Вселенной. Хотя из простой логики следует, что Вселенная есть всё, а значит, у нее нет ни начала, ни конца... Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 10.11.2021 - 12:37: ПЕРСОНАЛИИ - Personalias -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
10.11.2021 - 12:36: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
10.11.2021 - 12:36: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от д.м.н. Александра Алексеевича Редько - Карим_Хайдаров.
10.11.2021 - 12:35: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
10.11.2021 - 12:34: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вадима Глогера, США - Карим_Хайдаров.
10.11.2021 - 09:18: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> Волновая генетика Петра Гаряева, 5G-контроль и управление - Карим_Хайдаров.
10.11.2021 - 09:18: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.
10.11.2021 - 09:16: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
10.11.2021 - 09:15: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Екатерины Коваленко - Карим_Хайдаров.
10.11.2021 - 09:13: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вильгельма Варкентина - Карим_Хайдаров.
Bourabai Research - Технологии XXI века Bourabai Research Institution