к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Гальваномагнитные явления

  1. Феноменологическое рассмотрение гальваномагнитных явлений
  2. Природа гальваномагнитных явлений. Слабые и сильные поля
  3. Квантующие поля в гальваномагнитных явлениях
  4. Слабые поля в гальваномагнитных явлениях
  5. Правило Колера в гальваномагнитных явлениях
  6. Гальваномагнитные явления в сильных магнитных полях
  7. Полуметаллы в гальваномагнитных явлениях
  8. Полупроводники в гальваномагнитных явлениях
Гальваномагнитные явления - совокупность явлений, связанных с действием магнитного поля 1119920-159.jpg на электрические свойства проводников (металлов, полупроводников, полуметаллов), по которым протекает электрический ток (плотностью 1119920-160.jpg).

Различают нечётные гальваномагнитные явления, характеристики которых меняют знак при изменении направления 1119920-161.jpg на обратное, и чётные (не меняют знак), а также продольные (1119920-162.jpg) и поперечные (1119920-163.jpg _ ). Наиболее важные гальваномагнитные явления из нечётных - Холла эффект - возникновение разности потенциалов в направлении, перпендикулярном 1119920-164.jpg; из чётных - изменение удельного сопротивления р при 1119920-165.jpg (поперечное магнетосопротивление). При сравнительно небольших плотностях тока, когда справедлив закон Ома, т. е. между напряжённостью электрич. поля 1119920-166.jpg есть линейная связь (в общем случае анизотропная),

1119920-167.jpg

Гальваномагнитные явления определяются зависимостью от 1119920-168.jpgкомпонент тензора удельных сопротивлений 1119920-169.jpg.

Феноменологическое рассмотрение гальваномагнитных явлений

Влияние магн. поля приводит к изменению джоулева тепла Q, выделяющегося в кристалле, и к появлению добавочного, отсутствующего при 1119920-170.jpg электрич. поля (поля Xолла) 1119920-171.jpg. Величины 1119920-172.jpgопределяются соответственно симметричной и антисимметричной частями тензора 1119920-173.jpg

1119920-174.jpg

Разность1119920-175.jpg , где 1119920-176.jpg при Н=0, наз. тензором магнетосопротивлений, а скалярная величина 1119920-177.jpg- магнетосопротивлением, причём в качестве характеристики изменения сопротивления в магн. поле принимают отношение

1119920-178.jpg

Оно зависит от величины и направления 1119920-179.jpg, а также от направления 1119920-180.jpg. Согласно принципу симметрии, кинетич. коэф. Онсагера (см. Онсагера теорема)1119920-181.jpg 1119920-182.jpg , из-за чего компоненты тензора 1119920-183.jpg-чётные функции 1119920-184.jpg, а компоненты вектора 1119920-185.jpg-нечётные, т. е. тензор 1119920-186.jpg описывает чётные гальваномагнитные явления, а вектор 1119920-187.jpg- нечётные.

Природа гальваномагнитных явлений. Слабые и сильные поля

Зависимость 1119920-188.jpg обусловлена влиянием магн. поля на траектории носителей заряда (для определённости электронов). При H=0 электрон между столкновениями с фононами или дефектами кристаллич. решётки движется прямолинейно, при 1119920-189.jpg его путь искривляется. Грубой оценкой кривизны траектории может служить Ларморовский радиус 1119920-190.jpg, где р - импульс, е -заряд электрона. При этом мерой влияния H должно служить отношение длины свободного пробега l электрона к 1119920-191.jpg, а 1119920-192.jpg должно быть функцией 1119920-193.jpg. Величина 1119920-194.jpg, при к-рой 1119920-195.jpg, разделяет все магн. поля на слабые 1119920-196.jpg и сильные 1119920-197.jpg. Для полупроводников принято выражать 1119920-198.jpg через подвижность носителей заряда 1119920-199.jpg (1119920-200.jpg-транспортное время свободного пробега, 1119920-201.jpg-скорость электрона, 1119920-202.jpg - его эффективная масса:)1119920-203.jpg

Величина H0 зависит от температуры T: с понижением T 1119920-204.jpg возрастают, а 1119920-205.jpg уменьшается. Если при Т~300 К для разл. металлов и хорошо проводящих полупроводников Н0~105-107 Э (для Bi Н0~104 Э), а для плохо проводящих полупроводников H0 ~108-109 Э, то при низких темп-pax ограничение для H0 , как правило, накладывает чистота образца. Для предельно чистых образцов (Bi, W,Sn) при Т~4 К Н0~102 О. Уменьшение H0 с температурой позволяет, используя обычные поля ~104- 105 Э, осуществить условия, соответствующие сильному полю.

Квантующие поля в гальваномагнитных явлениях

Если в плоскости, перпендикулярной 1119920-206.jpg, электрон совершает периодическое (финитное) движение, то его энергия квантуется, причём расстояние между уровнями энергии равно 1119920-207.jpg, где 1119920-208.jpg - циклотронная частота. Квантование движения электронов проявляется в гальваномагнитных явлениях только в том случае, если 1119920-209.jpg. Магнитные поля, удовлетворяющие условию 1119920-210.jpg , наз. квантующими. Обычно при Т~300 К 1119920-211.jpg и В 1119920-212.jpg полупроводниках и полуметаллах концентрация носителей мала, и при низких темп-pax удаётся реализовать случай, когда заполнен лишь один магн. уровень (т. н. квантовый предел: 1119920-213.jpg , где 1119920-214.jpg-энергия Ферми вырожденного проводника при H=0).

Слабые поля в гальваномагнитных явлениях

В слабых магнитных полях 1119920-215.jpg можно воспользоваться разложением 1119920-216.jpg и аi по степеням 1119920-217.jpg Учитывай чётность 1119920-218.jpg и нечётность аi, имеем:

1119920-219.jpg

Здесь 1119920-220.jpg -тензор 4-го ранга, симметричный как по индексам i и k, так и по l и т (1119920-221.jpg) (принцип Онсагера не требует симметрии тензора bik)). Порядок величины компонент тензоров 1119920-222.jpg и 1119920-223.jpg определяется значением удельного сопротивления r0 при H=0 (1119920-224.jpg). Т.о., при 1119920-225.jpg магнетосопротивление (а значит, и Q)квадратично зависит от H, а поле Холла 1119920-226.jpg-линейно. Численные значения компонент 1119920-227.jpg определяются параметрами рассеяния электронов и могут быть вычислены только с использованием конкретных предположений о рассеянии носителей заряда в твёрдом теле. Однако число независимых компонент этих тензоров (анизотропия гальваномагнитных явлений в слабых полях) не зависит от механизмов рассеяния, а только от симметрии кристалла.

Для изотропных проводников (поликристаллов) тензор удельных сопротивлений изотропен: 1119920-228.jpg (1119920-229.jpg-символ Кронекера),

1119920-230.jpg

При 1119920-231.jpg:

1119920-232.jpg

При 1119920-233.jpg эффект Холла отсутствует, а

1119920-234.jpg

Величина R носит назв. коэф. Холла, для её оценки использована Друде формула 1119920-235.jpg , где N - концентрация электронов, 1119920-236.jpg (дальше просто 1119920-237.jpg). При T1119920-238.jpg300 К обычно 1119920-239.jpg и можно пользоваться ф-лами (5) и (6). Исключение составляет Bi, у к-рого при Н1119920-240.jpg3*104 Э 1119920-241.jpg велико (~2). Это дает возможность использовать Bi для измерения магнитных полей.

Правило Колера в гальваномагнитных явлениях

Анализ эксперим зависимости 1119920-242.jpg металлов от Н у разл проводников разной степени чистоты при разл. T привел к обнаружению правила Колера, согласно к-рому 1119920-243.jpg металла - функция 1119920-244.jpg, где 1119920-245.jpg - сопротивление (при Н=0) данного металла при Дебая температуре 1119920-246.jpg - сопротивление (при H=O)определ. образца при температуре T. Величина 1119920-254.jpg практически не изменяется при переходе от образца к образцу данного металла, т. к. определяется рассеянием электронов на фононах, 1119920-255.jpg при 1119920-256.jpg существенно зависит от состояния образца - от его чистоты, наличия или отсутствия дефектов, в т. ч. дислокаций (рис. 1).

1119920-247.jpg

Рис. 1. Магнетосопротивление поликристаллического In в поперечном магнитном поле для трех образцов при различной температуре 1) Т=14К, 1119920-248.jpg (273) = 0,24 2) Т=14 К, 1119920-249.jpg = 0,0086 3) Т = 4,2 К, 1119920-250.jpg=0,0012 4) T=4,2К, 1119920-251.jpg= 0,00007, 5) Т=2К,1119920-252.jpg=0,00003 (1119920-253.jpg=120К)


Правило Колера, сформулированное для поликристаллич. образцов металлов, подтверждает представление о том, что гальваномагнитные явления обусловлены искривлением траектории электронов в магн поле, т. к Нэф отличается от 1119920-257.jpg постоянным для данного металла множителем

1119920-258.jpg

Гальваномагнитные явления в сильных магнитных полях

Металлы. Исследования при низких темп-pax монокристаллич. образцов металлов в 1940-50-е гг. [E. Юсти (E. Justi), E. С. Боровик, H. E. Алексеевский, Ю. П. Гайдуков], позволившие осуществить условие 1119920-259.jpg , обнаружили разнообразные зависимости 1119920-260.jpg от величины и направления H у разл. металлов. При 1119920-261.jpg гальваномагнитные явления зависят от электронной энергетич. структуры металлов, в частности от формы ферми-поверхности (напр., открытая или замкнутая, рис 2).

1119920-262.jpg

Рис. 2. Схематическое изображение зависимости поперечного магнетосопротнвления 1119920-263.jpg от величины и направления магнитного поля H для металлов с разной геометрией поверхности Ферми: 1119920-264.jpg- угол, задающий направление H относительно кристаллографич. осей, 1 - направления, для к-рых существуют открытые траектории электронов 2 - направления где все траектории - замкнутые линии NЭ - концентрация электронов проводимости, NД - дырок

Вырождение электронного газа выделяет среди всех электронов металла электроны с энергией, равной энергии Ферми, т. е. расположенные в пространстве квазиимпульсов на поверхности Ферми. T. к. при движении в магн. поле сохраняются энергия электрона и проекция его квазиимпульса на Н, то под действием силы Лоренца электроны движутся по поверхности Ферми. Траектория электрона на поверхности Ферми - кривая, расположенная на плоскости, перпендикулярной Н. В зависимости от топологии поверхности Ферми траектория может быть замкнутой, а может уходить в бесконечность (рис. 3). Траектория электрона в реальном пространстве (в плоскости, перпендикулярной Н)подобна его траектории на поверхности Ферми. Поэтому зависимость поперечных (относительно H) компонент тензора 1119920-265.jpg определяется топологией поверхности Ферми. Эта зависимость, естественно, проявляется тем четче, чем больше H отличается от Н0, т. е. чем больше времени до столкновения электрон движется по определ. траектории (при 1119920-266.jpg он вовсе не успевает "выписать" траекторию и его движение между столкновениями можно считать прямолинейным). Если поверхность Ферми замкнута, то траектории всех электронов тоже замкнуты. При 1119920-267.jpg перемещение электронов в плоскости, перпендикулярной H, осуществляется за счет столкновений, в результате которых электрон "перепрыгивает" с орбиты на орбиту; его поперечная проводимость при этом 1119920-268.jpg . Если поверхность Ферми открытая, то характер траектории зависит от направления H; есть направления, при к-рых траектория открыта, а перемещение электрона вдоль них, как и при Н=0, ограничено длиной свободного пробега (проводимость в этом направлении 1119920-270.jpg ). Это - причина резкой анизотропии сопротивления у металлов с открытыми поверхностями Ферми.

1119920-269.jpg

Рис. 3. Примеры траекторий электронов в пространстве квазиимпульсов: а- на замкнутой поверхности Ферми траектории при любом направлении Н замкнуты; б - на открытой поверхности Ферми при одних направлениях Н они замкнуты, при других - открыты.

Различие в поведении скомпенсированных (концентрации электронов проводимости N3 и дырок NД равны) и нескомпенсированных 1119920-271.jpg металлов объясняется разл. ролью холловских компонент тензора проводимости 1119920-272.jpg. Рассмотрим для примера модельный (воображаемый) металл с двумя группами носителей: электроны и дырки заполняют сферич. поверхности Ферми. Связь между 1119920-273.jpg задаётся в этой модели уравнениями:

1119920-274.jpg

где 1119920-275.jpg (е > 0, 1119920-276.jpg > 0; знак эффективной массы дырки учтён в ур-нии для 1119920-277.jpg). Из ур-ний (7) можно определить компоненты тензора электропроводности металла (ось 1119920-278.jpg):

1119920-279.jpg

С ростом Н все поперечные компоненты1119920-280.jpg . Однако асимптотика поперечных компонент тензора 1119920-281.jpg зависит от соотношения между диссипативными ( sxx,1119920-282.jpg ) и холловскими 1119920-283.jpg компонентами. Действительно,

1119920-284.jpg

При одном сорте носителей зависимость 1119920-285.jpg от H полностью компенсируется холловским множителем1119920-286.jpg1119920-287.jpg и 1119920-288.jpg. При этом коэф. Холла

1119920-289.jpg

Причина независимости сопротивления от Н 1119920-290.jpg и универсального характера ф-лы (9) - в отсутствие дисперсии носителей заряда. Учет неполного вырождения носителей и зависимости t от энергии приводит к отличию R от (9) и 1119920-291.jpg от r.

1119920-292.jpg

Рис. 4. Зависимость 1119920-293.jpg монокристалла Au от угла1119920-294.jpg, задающего направление H, при Т = 4,2К. 1119920-295.jpg=1650, H0=1,5 кЭ, Н = 23,5 кЭ.

В случае двух сортов носителей, согласно (8), при больших полях (1119920-296.jpg 1, 1119920-297.jpg1):

1119920-298.jpg

и

1119920-299.jpg

Постоянная Холла 1119920-300.jpg ; при1119920-301.jpg в сильных полях:

1119920-302.jpg

Ф-ла (12), зависимость от Н и оценка порядка величины в ф-ле (11), полученные для простой модели, сохраняются для металлов с замкнутыми поверхностями Ферми произвольной формы. Кроме того, результаты не зависят от характера диссипативных процессов.

1119920-303.jpg

Рис. 5. Зависимость магнетосопротивления монокристалла Sn от угла j, задающего Н, при Т = 4,2К,1119920-304.jpg= 10,4, Н = 23,5 кЭ; ток течёт вдоль оси [001], поле вращается в плоскости (001).

У большинства металлов поверхности Ферми сложны (имеют открытые и замкнутые полости), разные группы электронов имеют разные l. Это усложняет зависимость от Н в полях и даёт возможность использовать гальваномагнитные явления как метод исследования электронного спектра и процессов рассеяния. Эффекты, обусловленные формой траекторий электронов, практически не проявляются в продольном сопротивлении; для всех металлов, как правило, 1119920-305.jpg , даже при 1119920-306.jpg

1119920-307.jpg

Рис. 6. Контуры открытой поверхности Ферми Sn, восстановленные по набору кривых, подобных рис. 5.

Чувствительность характеристик гальваномагнитных явлений при 1119920-308.jpg к структуре электронного спектра позволила использовать эксперим. зависимости поперечного сопротивления металлич. монокристаллов от величины и направления H (рис. 4, 5) для определения их поверхностей Ферми. При этом оказалось, что большинство металлов имеет открытые поверхности Ферми (Au, Ag, Cu, Sn, Pb; рис. 6), a Na, К, Rb, Al, In, а также полуметаллы (Bi, Sb) - замкнутые. Одновременно выяснилось, что Капицы закон - следствие усреднения 1119920-309.jpg (Н)по кристаллитам для металлов с открытыми поверхностями Ферми и переходная область от 1119920-310.jpg к 1119920-311.jpg для металлов с замкнутыми поверхностями Ферми.

В гальваномагнитных явлениях важную роль играет рассеяние электронов поверхностью образца: если траектория электронов замкнута, то поперечная проводимость осуществляется путём столкновений. Поэтому поверхностное рассеяние приводит к увеличению проводимости в приповерхностном слое, что находит отражение в зависимости 1119920-312.jpg от Н для образцов конечных размеров (статический скин-эффект, см. также Размерные эффекты).

Квантовые эффекты в гальваномагнитных явлениях

В сильных (квантующих) магнитных полях проявляет себя квантование энергии электронов, движущихся по замкнутым орбитам (см. выше). В металлах и вырожденных полупроводниках наблюдаются осцилляции магнетосопротивления в зависимости от поля Н (Шубникова - де Гааза эффект). Так же как и де Гааза - ван Альфена эффект, он обусловлен осцилляциями в зависимости от 1/H плотности состояний электронов на границе Ферми (см. Квантовые осцилля-ии в магнитном поле). Для типичных металлов осцилляционная зависимость обычно имеет малую амплитуду и "накладывается" на плавную "классическую", существенно не деформируя последнюю (рис. 7).

1119920-313.jpg

Рис. 7. Осцилляции Шубникова - де Гааза малой амплитуды на фоне слабого монотонного роста магнетосопротивления монокристалла Со при Т=4,2 К.


Изменение (по сравнению с классическими) зависимостей 1119920-314.jpg и 1119920-315.jpg от Н может быть обязано также магнитному пробою (туннельному проникновению электронов с одной траектории на другую при определённых направлениях Н). В частности, магнитный пробой может быть источником осцилляции 1119920-316.jpg большой амплитуды (рис. 8).

Своеобразные квантовые эффекты, обусловленные интерференцией электронных волн, прошедших разные пути, приводят к аномальному магнетосопротивлению, проявляющемуся в слабых магн. полях. Аномальное магнетосопротивление подавляется неупругим рассеянием, рассеянием с переворотом спина и др.

1119920-317.jpg

Рис. 8. Магнетопробойные осцилляции в монокристалле Be при Т = 2 К.


Ферро- и антиферромагн. металлы обладают аномальными гальваномагн. свойствами в полях 1119920-318.jpg (см. Ферромагнетизм, Антиферромагнетизм). При 1119920-319.jpg их поведение такое, как и поведение других металлов. Гальваномагнитные явления. в сплавах и интерметаллических соединениях не отличаются существенно от гальваномагнитных явлений в простых металлах.

Полуметаллы в гальваномагнитных явлениях

Гальваномагнитные явления - один из осн. источников сведений об электронной энергетич. структуре полуметаллов. Гальваномагнитные явления в полуметаллах осложнены влиянием магн. поля на число носителей в зонах, на положение краёв зон и т.п. Квантовые осцилляции в полуметаллах выражены значительно резче, т. к. расстояние между уровнями при не слишком больших полях достигает значений порядка энергии Ферми полуметалла. Из-за этого, в частности из-за энергетического перекрытия зон, в квантующих полях полностью "разрушается" плавная зависимость 1119920-321.jpg от H, обязанная классич. движению электронов в магнитном поле (рис. 9).

1119920-320.jpg

Рис. 9. Осцилляции Шубникова - де Гааза в монокристалле Bi при Г=1,5 К.

Характеристики гальваномагнитных явлений в полупроводниках при некоторых механизмах рассеяния


Механизм рассеяния

Неквантующее магнитное поле

Квантовый предел

1119920-323.jpg

1119920-324.jpg

1119920-325.jpg

1119920-326.jpg

1119920-327.jpg (H, T)

1119920-328.jpg (H, T)

невырожденный полупроводник

вырожденный полупроводник

невырожденный полупроводник

вырожденный полупроводник

Ионизированные примеси

1,5

1,93

2,15

0,706

H0T3/2

H3

H0T3/2

Н3Т

Акустические фононы (деформационное взаимодействие)

-0,5

1, 18

0,38

0,116

H2T-1/2

H5T

HT1/2

H2T

Акустические фононы (пьезоэлектрическое взаимодействие)

0,5

1,10

0,89

0,116

HT-1/2

Н4Т

H0T1/2

HT

Полупроводники в гальваномагнитных явлениях

Гальваномагнитные явления в полупроводниках обладают рядом особенностей, обусловленных прежде всего малой концентрацией носителей заряда. Электронно-дырочный газ полупроводников при T~300 K невырожден, и характеристики гальваномагнитных явлений существенно зависят от механизма рассеяния носителей (табл.). Выяснение роли разл. механизмов рассеяния - одна из осн. задач исследования гальваномагнитных явлений в полупроводниках. Эффективные массы носителей в полупроводниках 1119920-322.jpg, как правило, меньше массы свободного электрона m0 (в металле ~m0), благодаря чему значение H0 и Нкв для полупроводников меньше, чем для металлов. Для ряда полупроводников Н0~(0,1-1)*104Э, а условие Н>НКВ может быть достигнуто при T~10K. На гальваномагнитных явлениях в полупроводниках существ. влияние оказывает наличие неск. сортов носителей. Вклад разл. групп носителей в магнетосопротивление не аддитивен (в отличие от вклада в электропроводность). У полупроводников, имеющих один сорт носителей (для определённости - электронов с изотропным квадратичным законом дисперсии), при 1119920-329.jpg постоянная Холла равна:

1119920-330.jpg

где 1119920-331.jpg - холл-фактор, величина к-рого определяется зависимостью времени t релаксации носителей от энергии 1119920-332.jpg(табл.). Для характеристики эффекта Холла часто используют т. н. холловскую подвижность 1119920-333.jpg , где 1119920-334.jpg- электропроводность при H=0. С дрейфовой подвижностью 1119920-335.jpg она связана соотношением1119920-336.jpg (на опыте обычно измеряется именно 1119920-337.jpg, а по ней судят о величине 1119920-338.jpg). Поперечное магнетосопротивление определяется выражением (1119920-339.jpg, где 1119920-340.jpg зависит от механизма рассеяния (табл.).

При 1119920-341.jpg , как и в металлах, 1119920-342.jpg и не зависит от механизма рассеяния. Это обстоятельство используется для определения концентрации носителей 1119920-343.jpg. Для поперечного магнетосопротивления теория предсказывает насыщение: 1119920-344.jpg, где 1119920-345.jpg не зависит от H (табл.). Однако на опыте насыщения часто не наблюдается. Причины этого - в искривлении линий тока в магн. поле; искривление обусловлено наличием в образце неоднородностей, а также конечными размерами образца. Наиб. ярко явление выражено в полупроводниках с большой подвижностью носителей. Магнетосопротивление очень чувствительно к анизотропии энергетич. спектра носителей. Так 1119920-346.jpg (отсутствующее в случае изотропного спектра) определяется гофрировкой изоэнергетич. поверхностей в импульсном пространстве (напр., в p-Ge и р-Si).

Если полупроводник имеет и электроны и дырки с подвижностями 1119920-347.jpg , то при 1119920-348.jpg, согласно (7) и (8):

1119920-349.jpg

откуда R =0 при (NЭ/NД) -1119920-350.jpg , а не при N3 =NД ( mД/mЭ, как правило, мало).

При 1119920-351.jpg величина R зависит от соотношения между (Н/Н0)2 и 1119920-352.jpg. Если1119920-353.jpg1119920-354.jpg, то 1119920-355.jpg [см. (12)]. Если1119920-356.jpg1119920-357.jpg, то

1119920-358.jpg

Измерения температурных зависимостей постоянной Холла и магнетосопротивления при 1119920-359.jpg и 1119920-360.jpg дают информацию об отношении концентраций носителей и их подвижностей при разл. температурах.

В Ge, Si и InSb р-типа есть 2 сорта дырок, и следует учесть, что в области собств. проводимости имеется 3 типа носителей, а в области примесной проводимости - 2. В последнем случае осн. вклад в электропроводность при H=0 дают тяжёлые дырки, несмотря на то, что их 1119920-361.jpg больше. Времена релаксации обеих групп дырок практически равны; отношение их концентраций пропорционально отношению плотностей состояний, т. е. 1119920-362.jpg , а отношение подвижностей - 1119920-363.jpg. В итоге отношение вкладов в электропроводность порядка 1119920-364.jpg. Вклад же в R при 1119920-365.jpg определяется отношением 1119920-366.jpg1119920-367.jpg . T. о., постоянную Холла в слабых полях определяют лёгкие дырки, несмотря на то, что концентрация их меньше.

В полупроводниках относительно слабые электрич. поля вызывают неравномерность распределения носителей по энергиям - возникают "горячие" носители заряда, наблюдается нарушение закона Ома (1). Сила Лоренца отклоняет носители от направления дрейфа в электрич. поле. В итоге передача энергии от электрич. поля носителям уменьшается - магн. поле "охлаждает" носители. Соответственно возникают дополнит. изменения кинетич. коэффициентов. Наиб. ярко это проявляется в многодолинных полупроводниках, где под действием электрич. поля E существенно изменяются заселённости долин. Поэтому и R и 1119920-368.jpg в многодолинных полупроводниках существенно зависят от Е. Магн. поле изменяет неравновесную заселённость долин. В итоге оказывается, что в электрич. поле возникает нечётная по H часть магнетосопротивления. Эта часть 1119920-369.jpg в достаточно сильном электрич. поле может быть больше чётной, так что при соответствующих направлениях H 1119920-370.jpgстановится отрицательным (наблюдалось в n-Ge и n-Si). Изучение гальваномагнитных явлений в такой ситуации - метод исследования характеристик горячих носителей (см. Горячие электроны).

В квантующих магн. полях в вырожденных полупроводниках, как и в металлах, возникают осцилляции продольного и поперечного магнетосопротивления. Амплитуда осцилляционных пиков зависит от температуры носителей; измерения этих величин использовались для изучения зависимости температуры электронов от приложенного электрич. поля, причём по кинетике этого процесса удаётся оценить время релаксации энергии электронов. В сильных магн. полях, когда заполнено мало уровней, осцилляции выражены гораздо ярче, чем в типичных металлах. В случае невырожденных носителей зависимости 1119920-371.jpg и 1119920-372.jpg от H и T характеризуются степенными функциями, причём показатели степени зависят от механизма рассеяния (табл.). Постоянная Холла при 1119920-373.jpg не зависит от механизма рассеяния и определяется тем же выражением, что и в классич. области.

Осцилляции поперечного и продольного магнето-сопротивления, а также постоянной Холла (со значительно меньшей амплитудой при не слишком низкой температуре) наблюдаются в нек-рых полупроводниках (GaSb, HgTe) за счёт магнитофононного резонанса и его аналогов.

Сильное магн. поле влияет не только на энергетич. спектр электронов в зоне проводимости, но и на примесные состояния: волновая функция примесного состояния "сжимается" в плоскости, перпендикулярной H. В результате энергия ионизации примесного атома возрастает, что, в свою очередь, приводит к уменьшению концентрации носителей в зоне проводимости (мат. "вымораживание" носителей). В большинстве случаев, однако, волновые функции примесных атомов перекрываются с образованием примесной зоны. В такой ситуации осн. роль в электропроводности играют "прыжки" носителей по примесям без активации в зону проводимости (прыжковая проводимость). Деформация волновых функций примесей в магн. поле, приводящая к уменьшению их перекрытия, существенно влияет на электросопротивление. Характерной особенностью прыжкового механизма является гигантское положит. магнетосопротивление, зависящее от H по закону expF(H). Вид функции F(H)определяется соотношением между H и нек-рым характерным значением 1119920-374.jpg , где аВ- эфф. боровский радиус примесного состояния. При 1119920-375.jpg ; при1119920-376.jpg 1119920-377.jpg Экспоненциальная зависимость магнетосопротивления от H измерялась экспериментально (в n=InAs сопротивление увеличивалось в 105 раз при изменении Н от 2,8*104 до 14*104 T). Наблюдение гигантского магнетосопротивления - один из способов идентификации механизма прыжковой проводимости в полупроводниках.

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

Знаете ли Вы, в чем ложность понятия "физический вакуум"?

Физический вакуум - понятие релятивистской квантовой физики, под ним там понимают низшее (основное) энергетическое состояние квантованного поля, обладающее нулевыми импульсом, моментом импульса и другими квантовыми числами. Физическим вакуумом релятивистские теоретики называют полностью лишённое вещества пространство, заполненное неизмеряемым, а значит, лишь воображаемым полем. Такое состояние по мнению релятивистов не является абсолютной пустотой, но пространством, заполненным некими фантомными (виртуальными) частицами. Релятивистская квантовая теория поля утверждает, что, в согласии с принципом неопределённости Гейзенберга, в физическом вакууме постоянно рождаются и исчезают виртуальные, то есть кажущиеся (кому кажущиеся?), частицы: происходят так называемые нулевые колебания полей. Виртуальные частицы физического вакуума, а следовательно, он сам, по определению не имеют системы отсчета, так как в противном случае нарушался бы принцип относительности Эйнштейна, на котором основывается теория относительности (то есть стала бы возможной абсолютная система измерения с отсчетом от частиц физического вакуума, что в свою очередь однозначно опровергло бы принцип относительности, на котором постороена СТО). Таким образом, физический вакуум и его частицы не есть элементы физического мира, но лишь элементы теории относительности, которые существуют не в реальном мире, но лишь в релятивистских формулах, нарушая при этом принцип причинности (возникают и исчезают беспричинно), принцип объективности (виртуальные частицы можно считать в зависимсоти от желания теоретика либо существующими, либо не существующими), принцип фактической измеримости (не наблюдаемы, не имеют своей ИСО).

Когда тот или иной физик использует понятие "физический вакуум", он либо не понимает абсурдности этого термина, либо лукавит, являясь скрытым или явным приверженцем релятивистской идеологии.

Понять абсурдность этого понятия легче всего обратившись к истокам его возникновения. Рождено оно было Полем Дираком в 1930-х, когда стало ясно, что отрицание эфира в чистом виде, как это делал великий математик, но посредственный физик Анри Пуанкаре, уже нельзя. Слишком много фактов противоречит этому.

Для защиты релятивизма Поль Дирак ввел афизическое и алогичное понятие отрицательной энергии, а затем и существование "моря" двух компенсирующих друг друга энергий в вакууме - положительной и отрицательной, а также "моря" компенсирующих друг друга частиц - виртуальных (то есть кажущихся) электронов и позитронов в вакууме.

Однако такая постановка является внутренне противоречивой (виртуальные частицы ненаблюдаемы и их по произволу можно считать в одном случае отсутствующими, а в другом - присутствующими) и противоречащей релятивизму (то есть отрицанию эфира, так как при наличии таких частиц в вакууме релятивизм уже просто невозможен). Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 10.11.2021 - 12:37: ПЕРСОНАЛИИ - Personalias -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
10.11.2021 - 12:36: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
10.11.2021 - 12:36: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от д.м.н. Александра Алексеевича Редько - Карим_Хайдаров.
10.11.2021 - 12:35: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
10.11.2021 - 12:34: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вадима Глогера, США - Карим_Хайдаров.
10.11.2021 - 09:18: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> Волновая генетика Петра Гаряева, 5G-контроль и управление - Карим_Хайдаров.
10.11.2021 - 09:18: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.
10.11.2021 - 09:16: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
10.11.2021 - 09:15: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Екатерины Коваленко - Карим_Хайдаров.
10.11.2021 - 09:13: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вильгельма Варкентина - Карим_Хайдаров.
Bourabai Research - Технологии XXI века Bourabai Research Institution